Caco2 colon carcinoma cells
Caco2 colon carcinoma cells

One of my long-standing questions now has at least a partial answer, or maybe a pathway toward a partial answer.

My question was, “Why are different tumors the same?” That is, why do tumors of the same type often seem to have similar immunological changes?

Viruses of the same kind (all herpes simplex viruses, say) all avoid immunity in the same way because they all have a common ancestor from which they inherited their immune evasion molecules. But tumors have no common ancestor; each tumor has to grope around and find its own solution to common problems independently. So why should tumors of a particular tissue converge on common solutions? What would make a certain pathway a simple solution for colon carcinomas, but not for bladder tumors? And yet, apparently that’s what happens. Even though many different tumor types become non-immunogenic, tumors of a particular tissue type often reach non-immunogenicity by a similar path. For example:

… distinct molecular events underlie HLA class I loss, depending on the aetiology of the tumours; Lynch syndrome-related cancers presented with mutations in the β2-m molecule, while sporadic microsatellite-unstable tumours mainly showed alterations in the antigen-processing machinery components¬†1

When I posed this question a couple of months ago, I didn’t have an answer. I said

Part of the answer may be that the particular oncogenes associated with different tumor types lead to particular transcriptional hot-spots, and being a transcriptional hot-spot makes the region a mutational hot-spot as well, but at least as I understand it that’s not enough to account for the trends.

EH, in the comments, suggested a couple more possibilities: Perhaps destruction of a particular pathway is “a nice side benefit of destroying some yet undiscovered tumor suppressor important for melanoma or colon cancer? Or maybe the loss of certain repair genes common to a cancer type (like BRCA) leads to selective chromosomal instability in parts of chromosome 6?

It turns out, unsurprisingly, that I’m not the only one to ask the question. There is no general answer, but apparently a partial answer has been kicking around for a while now, and Hans Morreau’s group is starting to put some of the pieces together.2 As their model, Morreau’s group looked at MUTYH-associated polyposis (“MAP”)-associated tumors. (MAP is a heritable defect in DNA repair, so MAP patients have high rates of mutagenesis and usually develop colon carcinomas.) They reasoned that

MAP tumours could be more prone to stimulate a cytotoxic T-cell-mediated immune response, due to their frequent generation of aberrant peptides. Hence, these tumours could also be subjected to a strong selective pressure favouring the outgrowth of cancer cells that acquire an immune evasive phenotype.

DNA Repair
DNA Repair

In other words, the argument is that the group of tumors that lose (or reduce) DNA repair are much more likely to throw out mutant proteins. These mutant proteins are targets for the immune response (because they’re no longer “self” antigens), so to survive the immune attack the tumor has a strong selection for loss of immunogenicity (and also has the high mutation rate that allows them to rapidly mutate away from immunogenicity).

Sure enough, the tumors did frequently (72%) have defects in antigen presentation. (In fact, because of the way they measured HLA expression — by immunohistochemistry rather than sequencing — I would bet that the rate of functional defects was actually much higher than that.) They conclude that this “provides additional evidence that tumours carrying defects in DNA base repair mechanisms are more prone to undergo immune escape mechanisms.2¬† Since they don’t formally compare to other tumor types, I don’t think they can really say “more prone” — you’d have to use the same techniques to look at tumors from non-MAP patients to be able to say that. Still, I do think that is a significantly higher rate than has been turned up in previous studies using similar techniques,3 so I’ll tentatively accept that conclusion.

This doesn’t really explain why similar tumors target similar components, but it’s at least a conceptual connection between different tumor types and an underlying pathway. I’d be interested in a more large-scale screen, looking at cancers with stronger and weaker mutator phenotypes to see if common pathways emerge. One may already have popped up, since the authors note here that expression of β2-m was frequently lost4 in several tumors with DNA repair defects:

Although speculative, it is interesting to underline that carcinomas derived from both MAP and Lynch syndromes preferentially lose β2-m expression coupled to HLA class I deficiencies. A functional explanation for these observations remains elusive, but perhaps distinct reactions (both qualitative and quantitative) by the immune system, depending on the age of onset of the tumours, could condition the type of mechanisms that lead to HLA class I expression deficiencies. 2

Again, we would need to compare to other tumor types to see if this really is more frequent, but overall it feels as if there’s a hint of a pathway here. At least there are some specific questions that can be asked.

  1. de Miranda, N., Nielsen, M., Pereira, D., van Puijenbroek, M., Vasen, H., Hes, F., van Wezel, T., & Morreau, H. (2009). MUTYH-associated polyposis carcinomas frequently lose HLA class I expression-a common event amongst DNA-repair-deficient colorectal cancers The Journal of Pathology DOI: 10.1002/path.2569
    Dierssen JWF, de Miranda NFCC, Ferrone S, van Puijenbroek M, Cornelisse CJ, Fleuren GJ, et al. HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer 2007; 7: 33[]
  2. de Miranda, N., Nielsen, M., Pereira, D., van Puijenbroek, M., Vasen, H., Hes, F., van Wezel, T., & Morreau, H. (2009). MUTYH-associated polyposis carcinomas frequently lose HLA class I expression-a common event amongst DNA-repair-deficient colorectal cancers The Journal of Pathology DOI: 10.1002/path.2569[][][]
  3. Other studies, especially those of Soldano Ferrone, have turned up much higher rates of functional HLA class I defects, but they’ve used more focused, and more difficult and expensive, techniques to reach that conclusion.[]
  4. β2-m is a physical component of the MHC class I complex[]