ShowdownI’m not finding time to give these papers a full post each, so let me pool together several in the same theme: MHC alleles and protection against pathogens.

It’s generally accepted that the reason there are so many MHC alleles is related to their ability to protect against pathogens.1 The version is probably the frequency-dependent selection model. According to this, pathogens are selected to be resistant to common MHC alleles, so individuals with rare alleles have a selective advantage and those alleles become more common, until pathogens are selected for resistance to them in turn. (Described in more detail here.).

The particular steps in this concept are each fairly straightforward and reasonably well supported. We know that different MHC alleles can be more or less effective against pathogens; we see some instances of pathogens developing resistance to particular MHC alleles, and so on. But it’s been quite difficult to put all the pieces together. The best examples of pathogens evolving resistance to MHC alleles, for instance, are within a single host, in the case of HIV. When we look at even this virus over a population instead, it’s much harder to detect any particular adaptation to MHC (though there may be some).

The problem is (probably) that we’re looking at a single frame of a movie. This is a dynamic process, as the pathogens and the individuals within a population co-evolve. It’s hard to see fossil MHC alleles and just as hard to see fossil viral epitopes. The snapshot we see today may be at any point along the process – the pathogen may have the upper hand, the hosts may, or they may be perfectly balanced. (Also, of course, the host need to deal with thousands of pathogens, while each pathogen may focus on one or a handful of hosts. It would take a fairly assertive pathogen to single-handedly push a host population toward differential allele usage. The host’s version of the movie frame would actually be a blur of a thousand frames from a thousand movies, each of which is shown at different speeds and with a different starting point, all overlapping and interacting with each other.)

So observations supporting the frequency-dependent model have been rather scarce; in fact, instances where MHC alleles differentially affect pathogens are themselves relatively scarce, and those are the starting points from which frequency-dependent selection arises. So I’m always intrigued when we learn of cases where there are specific resistance and susceptibility alleles of MHC for particular pathogens, in the wild, and in a population rather than an individual.

Here are some I’ve noticed in the past few weeks.

Koehler, R., Walsh, A., Saathoff, E., Tovanabutra, S., Arroyo, M., Currier, J., Maboko, L., Hoelsher, M., Robb, M., Michael, N., McCutchan, F., Kim, J., & Kijak, G. (2010). Class I HLA-A*7401 Is Associated with Protection from HIV-1 Acquisition and Disease Progression in Mbeya, Tanzania The Journal of Infectious Diseases DOI: 10.1086/656913

Other MHC class I alleles have been shown to be protective against HIV, so this is mainly adding to the list; but it;s a shortish list, so any additions are interesting.

MacNamara, A., Rowan, A., Hilburn, S., Kadolsky, U., Fujiwara, H., Suemori, K., Yasukawa, M., Taylor, G., Bangham, C., & Asquith, B. (2010). HLA Class I Binding of HBZ Determines Outcome in HTLV-1 Infection PLoS Pathogens, 6 (9) DOI: 10.1371/journal.ppat.1001117

An attempt to link observed protective MHC alleles, with the mechanism of protection, concluding that being able to induce T cell recognition of a specific HTLV-1 protein is associated with protection.  This is conceptually similar to the proposed mechanism by which [some] MHC alleles protect against HIV,2 where a specific peptide target can’t mutate away from T cell recognition.

Appanna, R., Ponnampalavanar, S., Lum Chai See, L., & Sekaran, S. (2010). Susceptible and Protective HLA Class 1 Alleles against Dengue Fever and Dengue Hemorrhagic Fever Patients in a Malaysian Population PLoS ONE, 5 (9) DOI: 10.1371/journal.pone.0013029

They identify MHC alleles that may be associated with protection against disease, and protection against severe disease.  I’m a little uncomfortable with the relatively small number of patients involved here (less than 100), and would like to see it confirmed in a larger study.

Guivier, E., Galan, M., Male, P., Kallio, E., Voutilainen, L., Henttonen, H., Olsson, G., Lundkvist, A., Tersago, K., Augot, D., Cosson, J., & Charbonnel, N. (2010). Associations between MHC genes and Puumala virus infection in Myodes glareolus are detected in wild populations, but not from experimental infection data Journal of General Virology, 91 (10), 2507-2512 DOI: 10.1099/vir.0.021600-0

We revealed significant genetic differentiation between PUUV-seronegative and -seropositive bank voles sampled in wild populations … Also, we found no significant associations between infection success and MHC alleles among laboratory-colonized bank voles, which is explained by a loss of genetic variability that occurred during the captivity of these voles.

The difference between wild and captive voles is reminiscent of the difficulty and confusion involved in MHC function in lab mice. In at least one set of experiments, it was necessary to have semi-feral mice before mechanisms could be teased apart.


  1. There are a few alternate explanations, but even things like the mate-selection hypothesis, which I discussed here and here, usually still involve an element of protection against pathogens.[]
  2. HIV and HTLV are related viruses, for what that’s worth[]